1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
//! Constants and data structures shared between entropy read and entropy write. use entropy::dictionary::{Fetch, LinearTable, TableRef}; use std::collections::HashMap; use std::marker::PhantomData; use smallvec::SmallVec; /// The magic number at the start of the file. /// /// The early \0 is used to ensure tools such as github detect the file as binary. /// The various \r, \n, \0 are there as canaries to avoid ASCII<->BINARY transcoding /// errors. pub const GLOBAL_HEADER_START: &'static [u8; 8] = b"\x89BJS\r\n\0\n"; /// The main section, containing the entropy-encoded stream. pub const SECTION_MAIN: &'static [u8] = b"[[main]]"; pub const SECTION_MAIN_WITHOUT_BRACKETS: &'static [u8] = b"main"; /// The prelude section, containing the dictionary extensions, /// encoded using e.g. brotli. pub const SECTION_PRELUDE: &'static [u8] = b"[[prelude]]"; // pub const SECTION_PRELUDE_WITHOUT_BRACKETS: &'static [u8] = b"prelude"; /// The content section, containing the streams of indices of /// user-extensible values, encoded e.g. using brotli. pub const SECTION_CONTENT: &'static [u8] = b"[[content]]"; pub const SECTION_CONTENT_WITHOUT_BRACKETS: &'static [u8] = b"content"; /// Indicating that the stream is compressed with format "entropy 0.2". pub const FORMAT_ENTROPY_0: &'static [u8] = b"entropy0.2;"; // pub const FORMAT_IDENTITY: &'static [u8] = b"identity;"; /// Indicating that the stream is compressed with format "brotli". pub const FORMAT_BROTLI: &'static [u8] = b"br;"; /// Prelude data. /// /// The prelude contains streams to read or write dictionary extensions for /// user-extensible symbols (aka "prelude dictionaries"). /// /// Examples of `T`: `LazyStream` (for writing) or `Cursor<Vec<u8>>` (for reading). pub struct PreludeStreams<T> { /// Instances of IdentifierName. /// /// To aid with compression, we typically store user-extensible strings /// as two distinct data structures: /// /// - a single string, containing all concatenated strings without delimiter; /// - a list of lengths, used to split the string into the successive strings. pub identifier_names: T, pub identifier_names_len: T, /// Instances of PropertyKey /// /// To aid with compression, we typically store user-extensible strings /// as two distinct data structures: /// /// - a single string, containing all concatenated strings without delimiter; /// - a list of lengths, used to split the string into the successive strings. pub property_keys: T, pub property_keys_len: T, /// Instances of string literals. /// /// To aid with compression, we typically store user-extensible strings /// as two distinct data structures: /// /// - a single string, containing all concatenated strings without delimiter; /// - a list of lengths, used to split the string into the successive strings. pub string_literals: T, pub string_literals_len: T, /// Instances of InterfaceName pub interface_names: T, /// Instances of string enums. pub string_enums: T, /// Instances of list lengths. pub list_lengths: T, /// Instances of floating-point numbers. pub floats: T, /// Instances of unsigned longs. pub unsigned_longs: T, } impl<T> PreludeStreams<T> { /// Create a new PreludeStreams. pub fn with<F>(f: F) -> Self where F: Fn(&str) -> T, { PreludeStreams { identifier_names: f("identifier_names"), identifier_names_len: f("identifier_names_len"), property_keys: f("property_keys"), property_keys_len: f("property_keys_len"), string_literals: f("string_literals"), string_literals_len: f("string_literals_len"), interface_names: f("interface_names"), string_enums: f("string_enums"), list_lengths: f("list_lengths"), floats: f("floats"), unsigned_longs: f("unsigned_longs"), } } /// Iterate through fields of PreludeStreams. pub fn into_iter(self) -> impl Iterator<Item = (&'static str, T)> { vec![ ("identifier_names", self.identifier_names), ("identifier_names_len", self.identifier_names_len), ("property_keys", self.property_keys), ("property_keys_len", self.property_keys_len), ("string_literals", self.string_literals), ("string_literals_len", self.string_literals_len), ("interface_names", self.interface_names), ("string_enums", self.string_enums), ("list_lengths", self.list_lengths), ("floats", self.floats), ("unsigned_longs", self.unsigned_longs), ] .into_iter() } /// Access a field by its name, specified as a sequence of bytes. /// /// This method is typically used to simplify parsing a file that /// contains sections explicitly labelled "identifier_names", /// "property_keys", etc. /// In such case, `field_name` is expected to be a user input. /// /// Return `None` if `field_name` is not one of the field names. pub fn get_mut_b(&mut self, field_name: &[u8]) -> Option<&mut T> { match field_name { b"identifier_names" => Some(&mut self.identifier_names), b"identifier_names_len" => Some(&mut self.identifier_names_len), b"property_keys" => Some(&mut self.property_keys), b"property_keys_len" => Some(&mut self.property_keys_len), b"string_literals" => Some(&mut self.string_literals), b"string_literals_len" => Some(&mut self.string_literals_len), b"interface_names" => Some(&mut self.interface_names), b"string_enums" => Some(&mut self.string_enums), b"list_lengths" => Some(&mut self.list_lengths), b"floats" => Some(&mut self.floats), b"unsigned_longs" => Some(&mut self.unsigned_longs), _ => None, } } } /// A stack-allocated buffer for names of sections and streams. pub const NAME_MAX_LEN: usize = 32; pub type NameData = SmallVec<[u8; NAME_MAX_LEN]>; /// State of a input/output stream of `TableRef`. /// /// Used to (de)serialize `TableRef`, as the encoding of an `TableRef` /// may depend on that of previous values. /// /// # Format /// /// u32 representation: `TableRef` interpretation /// /// - Next in Prelude /// - `0`: `TableRef::Prelude(prelude_latest + 1)` /// where `prelude_latest` is the latest prelude value encountered /// so far or -1 if no prelude value has been encountered yet /// /// - Recall Window Range [1, window_len] where `window_len` is the length /// of the window, specified when creating the `TableRefStreamState` /// - `1`: Latest value /// - `2`: Second latest value /// - ... /// - `window_len`: ... /// /// - Reference into Prelude Range: [window_len + 1, window_len + prelude_len] /// where `prelude_len` is the number of elements in the Prelude. /// - `window_len + 1`: `TableRef::Prelude(0)` /// - `window_len + 2`: `TableRef::Prelude(1)` /// - ... /// /// - Imported Reference into Shared Range: [window_len + prelude_len + 1, /// window_len + import_len], where `import_len` is the number of /// **distinct** `TableRef::Shared` references encountere **so far** /// in the stream. /// - `window_len + prelude_len + 1`: `TableRef::Shared(s1)` /// where `TableRef::Shared(s1)` was the first `TableRef::Shared` /// reference encountered in the stream /// - `window_len + prelude_len + 2`: `TableRef::Shared(s2)` /// where `TableRef::Shared(s2)` was the first `TableRef::Shared` /// reference encountered in the stream and distinct from `s1` /// - `window_len + prelude_len + 3`: `TableRef::Shared(s3)` /// where `TableRef::Shared(s1)` was the first `TableRef::Shared` /// reference encountered in the stream and distinct from `s1`, `s2`, /// ... /// - ... /// /// - First-time Reference into Shared Range: [window_len + prelude_len + import_len + 1, /// ...[ /// - `window_len + prelude_len + import_len + 1`: `TableRef::Shared(0)` /// - `window_len + prelude_len + import_len + 2`: `TableRef::Shared(2)` /// - ... /// /// # Design notes /// /// The main goals of this format are to: /// /// - support both stream reading; /// - expose wherever possible patterns that a stream compressor (e.g. brotli) can /// use to efficiently compress the stream. /// /// Experiments show that the use of `0` and, for some streams, the Recall Window Range, /// expose such useful patterns. /// /// Experiments show that the dual Imported Shared References/First-time Shared /// References mechanism considerably decrease the sparsity of references into the /// shared dictionary. Where raw references into the shared dictionary are typically /// represented by a 3 bytes long varnum, consisting in unpredictable bytes, this /// mechanism tends to reduce them to varnums that may be represented with either 1 /// byte or 2 bytes with a small (hence easy to predict) first byte. In turn, this /// exposes patterns that the stream compressor may use efficiently. #[derive(Debug)] pub struct TableRefStreamState<T> { /// The latest `TableRef::Prelude` value. /// /// Updated whenever we /// - encode a new `TableRef::Prelude`; /// - decode a value to an `TableRef::Prelude`, including the special value `0`. latest_in_prelude: Option<u32>, /// Phantom type, to ensure that we only ever use a given `TableRefStreamState` with /// a single (type of) LinearTable. phantom: PhantomData<T>, /// The latest references encountered. /// /// window[0] is the latest reference encountered, /// window[1] the second latest /// ... /// /// Invariant: /// - length is always <= window_max_len /// - if i ≠ j, window[i] ≠ window[j] window: Vec<TableRef>, /// The maximal length of `self.window`, which is also the number of /// integers to reserve to represent backreferences to values encountered /// recently. window_max_len: usize, /// A mapping from shared references (`TableRef::Shared(s)`) to the number /// of shared references in this stream encountered before `s`. In other /// words, the the first entry added (by chronological order) maps to `0`, /// the second maps to `1`, etc. Used to ensure that `TableRef::Shared` references /// fit in successive values, and are generally small enough to be represented by /// a varnum of 1 or 2 bytes, instead of being all over the place. /// /// If the `TableRefStreamState` is used for decoding, this map is empty. /// /// Invariant: Keys are always `TableRef::Shared`. /// Invariant: Values are contiguous, starting with 0. shared_reference_to_write_order: HashMap<TableRef, u32>, /// A mapping from read order to `TableRef::Shared` instances, i.e. /// the first entry read (by chronological order) is at position `0`, /// the second at position `1`, etc. Used to ensure that `TableRef::Shared` /// references are generally small enough to fit in small varnums. /// /// If the `TableRefStreamState` is used for encoding, this vector is empty. /// /// Invariant: Values are always `TableRef::Shared`. shared_reference_by_read_order: Vec<TableRef>, /// The number of entries in the prelude. prelude_len: usize, /// The number of entries in the shared dictionary. shared_len: usize, } impl<T> TableRefStreamState<T> where T: Eq + std::hash::Hash + Clone, { /// Create a new `TableRefStreamState`. /// /// `window_max_len` represents the number of integers to reserve to /// represent backreferences to values encountered recently. pub fn new(window_max_len: usize, table: &LinearTable<T>) -> Self { TableRefStreamState { latest_in_prelude: None, phantom: PhantomData, window_max_len, window: Vec::with_capacity(window_max_len), shared_reference_to_write_order: HashMap::new(), shared_reference_by_read_order: vec![], shared_len: table.shared_len(), prelude_len: table.prelude_len(), } } /// The value of `latest_in_prelude + 1`, or `0` if `latest_in_prelude` /// has never been set. fn next_in_prelude(&self) -> u32 { match self.latest_in_prelude { Some(latest) => latest + 1, None => 0, } } /// Decode a `TableRef` from a `u32`. pub fn from_u32(&mut self, value: u32) -> Option<TableRef> { let index = loop { // Fake loop, used simply to be able to `break` out. if value == 0 { // Value `0` is reserved to represent `latest_in_prelude + 1` (or `0` if `latest_in_prelude` is `None`). let next_in_prelude = self.next_in_prelude(); break TableRef::Prelude(next_in_prelude as usize); } // Renormalize from 0. let value = value - 1; debug!(target: "rw", "TableRefStreamState::from_u32, value is not 0, renormalizing to {}, checking if it's in the floating window", value); if (value as usize) < self.window_max_len { // this is a hit in the floating window. break *self.window.get(value as usize)?; } // Renormalize from 0. let value = value - self.window_max_len as u32; debug!(target: "rw", "TableRefStreamState::from_u32, renormalizing to {}, checking if it's in the prelude (prelude len is {})", value, self.prelude_len); if (value as usize) < self.prelude_len { break TableRef::Prelude(value as usize); } // Renormalize from 0. let value = value - self.prelude_len as u32; debug!(target: "rw", "TableRefStreamState::from_u32, renormalizing to {}, checking if it's an imported shared reference", value); if (value as usize) < self.shared_reference_by_read_order.len() { // this is a shared reference that we have already encountered break self.shared_reference_by_read_order[value as usize]; } // Renormalize from 0. let value = value - self.shared_reference_by_read_order.len() as u32; debug!(target: "rw", "TableRefStreamState::from_u32, renormalizing to {}, checking if it's a fresh shared reference", value); if (value as usize) < self.shared_len { let result = TableRef::Shared(value as usize); self.shared_reference_by_read_order.push(result); break result; } debug!(target: "rw", "TableRefStreamState::from_u32, oh, we didn't find any result"); return None; }; // Update caches (latest in prelude, position in window). self.update_position_in_window(index); if let TableRef::Prelude(ref index_in_prelude) = index { self.latest_in_prelude = Some(*index_in_prelude as u32) } Some(index) } /// Update `window` using a LRU eviction strategy. /// /// Return: /// - `Some(pos)` if `value` was already in `window` at position `pos`; /// - `None` otherwise. fn update_position_in_window(&mut self, value: TableRef) -> Option<usize> { if self.window_max_len == 0 { return None; } if let Some(pos) = self.window.iter().position(|i| i == &value) { if pos == 0 { // `value` was already the latest value in `window`, nothing to update. } else { // Rotate the value to the first position. let ref mut slice = self.window.as_mut_slice()[0..pos + 1]; slice.rotate_right(1); } return Some(pos); } if self.window.len() < self.window_max_len { // Insert a new latest value in the window. self.window.insert(0, value); } else { // Insert a new value at 0, shifting other values and getting // rid of the last value in window. let len = self.window.len(); self.window[len - 1] = value; self.window.rotate_right(1); } assert!(self.window[0] == value); assert!(self.window.len() <= self.window_max_len); None } /// Mark a `TableRef::Shared` as encountered if necessary, return the information /// necessary to encode it as `u32`. /// /// If this is the first instance of `value` to be encoded, return `Fetch::Miss(index)`, /// where `index` is in `[import len, import len + shared len[` and `import len` is /// the number of distinct instances of `TableRef::Shared` encountered /// so far. Also, record `number of distinct instances of /// `TableRef::Shared` encountered so far as the future index for `value`. /// /// Otherwise, return `Fetch::Hit(index)`, where `index` is the index recorded above, /// in `[0, total import len[`, and `total import len` is the total number of distinct /// instances of `TableRef::Shared` encountered in the file. /// /// # Failures /// /// Panics if `value` is not a `TableRef::Shared`. fn update_shared_reference_to_write_order(&mut self, value: TableRef) -> Fetch<u32> { use std::collections::hash_map::Entry; let len = self.shared_reference_to_write_order.len() as u32; debug_assert!(value.as_shared().is_some()); debug!(target: "rw", "TableRefStreamState::update_shared_reference_to_write_order adding {:?} to {:?}", value, self.shared_reference_to_write_order); match self.shared_reference_to_write_order.entry(value) { Entry::Occupied(o) => Fetch::Hit(*o.get()), Entry::Vacant(v) => { // Insert a new value. v.insert(len); // Return the position in the . Fetch::Miss(len + value.as_shared().unwrap() as u32) } } } /// Encode an `TableRef` into a `u32`. /// /// This method does *not* perform any kind of sanity check on the `TableRef`. pub fn into_u32(&mut self, value: TableRef) -> u32 { debug!(target: "rw", "TableRefStreamState::into_u32, encoding {:?}", value); let maybe_position_in_window = self.update_position_in_window(value); match value { TableRef::Shared(_) => { debug!(target: "rw", "TableRefStreamState::into_u32, it's a shared value"); if let Some(pos) = maybe_position_in_window { debug!(target: "rw", "TableRefStreamState::into_u32, it's a repeat {}", pos); // If we repeat a recent value, emit its position in the window. // Use interval [1, self.window_max_len]. return pos as u32 + 1; } debug!(target: "rw", "TableRefStreamState::into_u32, it's not a repeat - prelude len is {}", self.prelude_len); match self.update_shared_reference_to_write_order(value) { Fetch::Hit(pos) => { debug!(target: "rw", "TableRefStreamState::into_u32, it's already imported at {}", pos); // If we repeat a shared reference that we have seen at least once, // emit its position in the table of imported shared references. // Use interval ]self.window_max_len + prelude_len, self.window_max_len + prelude_len + self.imported_len]. return self.window_max_len as u32 + self.prelude_len as u32 + pos + 1; } Fetch::Miss(pos) => { debug!(target: "rw", "TableRefStreamState::into_u32, we need to import it from {}", pos); // Otherwise, emit the position in the shared dictionary. // Use interval ]self.window_max_len + prelude_len + self.imported_len, ...]. return self.window_max_len as u32 + self.prelude_len as u32 + pos + 1; } } } // References to the prelude dictionary may be 0 (for next) or shifted by 1. TableRef::Prelude(i) => { let i = i as u32; let next_in_prelude = self.next_in_prelude(); self.latest_in_prelude = Some(i); if next_in_prelude == i { // 0 is reserved exactly for this. return 0; } match maybe_position_in_window { // If we repeat a recent value, emit its position. // Use interval [1, self.window_max_len]. Some(pos) => (pos + 1) as u32, // Otherwise, emit a direct reference to the prelude dictionary. // Use interval ]self.window_max_len + self.shared_len, ..] None => (i + self.window_max_len as u32 + 1), } } } } }