#![no_std]
#![cfg_attr(feature = "union", feature(untagged_unions))]
#![cfg_attr(feature = "specialization", feature(specialization))]
#![cfg_attr(feature = "may_dangle", feature(dropck_eyepatch))]
#![deny(missing_docs)]
#[doc(hidden)]
pub extern crate alloc;
#[cfg(any(test, feature = "write"))]
extern crate std;
use alloc::boxed::Box;
use alloc::{vec, vec::Vec};
use core::borrow::{Borrow, BorrowMut};
use core::cmp;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::hint::unreachable_unchecked;
use core::iter::{repeat, FromIterator, FusedIterator, IntoIterator};
use core::mem;
use core::mem::MaybeUninit;
use core::ops::{self, RangeBounds};
use core::ptr::{self, NonNull};
use core::slice::{self, SliceIndex};
#[cfg(feature = "serde")]
use serde::{
de::{Deserialize, Deserializer, SeqAccess, Visitor},
ser::{Serialize, SerializeSeq, Serializer},
};
#[cfg(feature = "serde")]
use core::marker::PhantomData;
#[cfg(feature = "write")]
use std::io;
#[macro_export]
macro_rules! smallvec {
(@one $x:expr) => (1usize);
($elem:expr; $n:expr) => ({
$crate::SmallVec::from_elem($elem, $n)
});
($($x:expr),*$(,)*) => ({
let count = 0usize $(+ smallvec!(@one $x))*;
let mut vec = $crate::SmallVec::new();
if count <= vec.inline_size() {
$(vec.push($x);)*
vec
} else {
$crate::SmallVec::from_vec($crate::alloc::vec![$($x,)*])
}
});
}
#[cfg(not(feature = "union"))]
macro_rules! debug_unreachable {
() => {
debug_unreachable!("entered unreachable code")
};
($e:expr) => {
if cfg!(not(debug_assertions)) {
unreachable_unchecked();
} else {
panic!($e);
}
};
}
pub trait ExtendFromSlice<T> {
fn extend_from_slice(&mut self, other: &[T]);
}
impl<T: Clone> ExtendFromSlice<T> for Vec<T> {
fn extend_from_slice(&mut self, other: &[T]) {
Vec::extend_from_slice(self, other)
}
}
unsafe fn deallocate<T>(ptr: *mut T, capacity: usize) {
let _vec: Vec<T> = Vec::from_raw_parts(ptr, 0, capacity);
}
pub struct Drain<'a, T: 'a + Array> {
tail_start: usize,
tail_len: usize,
iter: slice::Iter<'a, T::Item>,
vec: NonNull<SmallVec<T>>,
}
impl<'a, T: 'a + Array> fmt::Debug for Drain<'a, T>
where
T::Item: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
}
}
unsafe impl<'a, T: Sync + Array> Sync for Drain<'a, T> {}
unsafe impl<'a, T: Send + Array> Send for Drain<'a, T> {}
impl<'a, T: 'a + Array> Iterator for Drain<'a, T> {
type Item = T::Item;
#[inline]
fn next(&mut self) -> Option<T::Item> {
self.iter
.next()
.map(|reference| unsafe { ptr::read(reference) })
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, T: 'a + Array> DoubleEndedIterator for Drain<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<T::Item> {
self.iter
.next_back()
.map(|reference| unsafe { ptr::read(reference) })
}
}
impl<'a, T: Array> ExactSizeIterator for Drain<'a, T> {
#[inline]
fn len(&self) -> usize {
self.iter.len()
}
}
impl<'a, T: Array> FusedIterator for Drain<'a, T> {}
impl<'a, T: 'a + Array> Drop for Drain<'a, T> {
fn drop(&mut self) {
self.for_each(drop);
if self.tail_len > 0 {
unsafe {
let source_vec = self.vec.as_mut();
let start = source_vec.len();
let tail = self.tail_start;
if tail != start {
let src = source_vec.as_ptr().add(tail);
let dst = source_vec.as_mut_ptr().add(start);
ptr::copy(src, dst, self.tail_len);
}
source_vec.set_len(start + self.tail_len);
}
}
}
}
#[cfg(feature = "union")]
union SmallVecData<A: Array> {
inline: MaybeUninit<A>,
heap: (*mut A::Item, usize),
}
#[cfg(feature = "union")]
impl<A: Array> SmallVecData<A> {
#[inline]
unsafe fn inline(&self) -> *const A::Item {
self.inline.as_ptr() as *const A::Item
}
#[inline]
unsafe fn inline_mut(&mut self) -> *mut A::Item {
self.inline.as_mut_ptr() as *mut A::Item
}
#[inline]
fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> {
SmallVecData { inline }
}
#[inline]
unsafe fn into_inline(self) -> MaybeUninit<A> {
self.inline
}
#[inline]
unsafe fn heap(&self) -> (*mut A::Item, usize) {
self.heap
}
#[inline]
unsafe fn heap_mut(&mut self) -> &mut (*mut A::Item, usize) {
&mut self.heap
}
#[inline]
fn from_heap(ptr: *mut A::Item, len: usize) -> SmallVecData<A> {
SmallVecData { heap: (ptr, len) }
}
}
#[cfg(not(feature = "union"))]
enum SmallVecData<A: Array> {
Inline(MaybeUninit<A>),
Heap((*mut A::Item, usize)),
}
#[cfg(not(feature = "union"))]
impl<A: Array> SmallVecData<A> {
#[inline]
unsafe fn inline(&self) -> *const A::Item {
match self {
SmallVecData::Inline(a) => a.as_ptr() as *const A::Item,
_ => debug_unreachable!(),
}
}
#[inline]
unsafe fn inline_mut(&mut self) -> *mut A::Item {
match self {
SmallVecData::Inline(a) => a.as_mut_ptr() as *mut A::Item,
_ => debug_unreachable!(),
}
}
#[inline]
fn from_inline(inline: MaybeUninit<A>) -> SmallVecData<A> {
SmallVecData::Inline(inline)
}
#[inline]
unsafe fn into_inline(self) -> MaybeUninit<A> {
match self {
SmallVecData::Inline(a) => a,
_ => debug_unreachable!(),
}
}
#[inline]
unsafe fn heap(&self) -> (*mut A::Item, usize) {
match self {
SmallVecData::Heap(data) => *data,
_ => debug_unreachable!(),
}
}
#[inline]
unsafe fn heap_mut(&mut self) -> &mut (*mut A::Item, usize) {
match self {
SmallVecData::Heap(data) => data,
_ => debug_unreachable!(),
}
}
#[inline]
fn from_heap(ptr: *mut A::Item, len: usize) -> SmallVecData<A> {
SmallVecData::Heap((ptr, len))
}
}
unsafe impl<A: Array + Send> Send for SmallVecData<A> {}
unsafe impl<A: Array + Sync> Sync for SmallVecData<A> {}
pub struct SmallVec<A: Array> {
capacity: usize,
data: SmallVecData<A>,
}
impl<A: Array> SmallVec<A> {
#[inline]
pub fn new() -> SmallVec<A> {
assert!(
mem::size_of::<A>() == A::size() * mem::size_of::<A::Item>()
&& mem::align_of::<A>() >= mem::align_of::<A::Item>()
);
SmallVec {
capacity: 0,
data: SmallVecData::from_inline(MaybeUninit::uninit()),
}
}
#[inline]
pub fn with_capacity(n: usize) -> Self {
let mut v = SmallVec::new();
v.reserve_exact(n);
v
}
#[inline]
pub fn from_vec(mut vec: Vec<A::Item>) -> SmallVec<A> {
if vec.capacity() <= A::size() {
unsafe {
let mut data = SmallVecData::<A>::from_inline(MaybeUninit::uninit());
let len = vec.len();
vec.set_len(0);
ptr::copy_nonoverlapping(vec.as_ptr(), data.inline_mut(), len);
SmallVec {
capacity: len,
data,
}
}
} else {
let (ptr, cap, len) = (vec.as_mut_ptr(), vec.capacity(), vec.len());
mem::forget(vec);
SmallVec {
capacity: cap,
data: SmallVecData::from_heap(ptr, len),
}
}
}
#[inline]
pub fn from_buf(buf: A) -> SmallVec<A> {
SmallVec {
capacity: A::size(),
data: SmallVecData::from_inline(MaybeUninit::new(buf)),
}
}
#[inline]
pub fn from_buf_and_len(buf: A, len: usize) -> SmallVec<A> {
assert!(len <= A::size());
unsafe { SmallVec::from_buf_and_len_unchecked(MaybeUninit::new(buf), len) }
}
#[inline]
pub unsafe fn from_buf_and_len_unchecked(buf: MaybeUninit<A>, len: usize) -> SmallVec<A> {
SmallVec {
capacity: len,
data: SmallVecData::from_inline(buf),
}
}
pub unsafe fn set_len(&mut self, new_len: usize) {
let (_, len_ptr, _) = self.triple_mut();
*len_ptr = new_len;
}
#[inline]
pub fn inline_size(&self) -> usize {
A::size()
}
#[inline]
pub fn len(&self) -> usize {
self.triple().1
}
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
#[inline]
pub fn capacity(&self) -> usize {
self.triple().2
}
#[inline]
fn triple(&self) -> (*const A::Item, usize, usize) {
unsafe {
if self.spilled() {
let (ptr, len) = self.data.heap();
(ptr, len, self.capacity)
} else {
(self.data.inline(), self.capacity, A::size())
}
}
}
#[inline]
fn triple_mut(&mut self) -> (*mut A::Item, &mut usize, usize) {
unsafe {
if self.spilled() {
let &mut (ptr, ref mut len_ptr) = self.data.heap_mut();
(ptr, len_ptr, self.capacity)
} else {
(self.data.inline_mut(), &mut self.capacity, A::size())
}
}
}
#[inline]
pub fn spilled(&self) -> bool {
self.capacity > A::size()
}
pub fn drain<R>(&mut self, range: R) -> Drain<'_, A>
where
R: RangeBounds<usize>,
{
use core::ops::Bound::*;
let len = self.len();
let start = match range.start_bound() {
Included(&n) => n,
Excluded(&n) => n + 1,
Unbounded => 0,
};
let end = match range.end_bound() {
Included(&n) => n + 1,
Excluded(&n) => n,
Unbounded => len,
};
assert!(start <= end);
assert!(end <= len);
unsafe {
self.set_len(start);
let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
Drain {
tail_start: end,
tail_len: len - end,
iter: range_slice.iter(),
vec: NonNull::from(self),
}
}
}
#[inline]
pub fn push(&mut self, value: A::Item) {
unsafe {
let (_, &mut len, cap) = self.triple_mut();
if len == cap {
self.reserve(1);
}
let (ptr, len_ptr, _) = self.triple_mut();
*len_ptr = len + 1;
ptr::write(ptr.add(len), value);
}
}
#[inline]
pub fn pop(&mut self) -> Option<A::Item> {
unsafe {
let (ptr, len_ptr, _) = self.triple_mut();
if *len_ptr == 0 {
return None;
}
let last_index = *len_ptr - 1;
*len_ptr = last_index;
Some(ptr::read(ptr.add(last_index)))
}
}
pub fn grow(&mut self, new_cap: usize) {
unsafe {
let (ptr, &mut len, cap) = self.triple_mut();
let unspilled = !self.spilled();
assert!(new_cap >= len);
if new_cap <= self.inline_size() {
if unspilled {
return;
}
self.data = SmallVecData::from_inline(MaybeUninit::uninit());
ptr::copy_nonoverlapping(ptr, self.data.inline_mut(), len);
self.capacity = len;
} else if new_cap != cap {
let mut vec = Vec::with_capacity(new_cap);
let new_alloc = vec.as_mut_ptr();
mem::forget(vec);
ptr::copy_nonoverlapping(ptr, new_alloc, len);
self.data = SmallVecData::from_heap(new_alloc, len);
self.capacity = new_cap;
if unspilled {
return;
}
} else {
return;
}
deallocate(ptr, cap);
}
}
#[inline]
pub fn reserve(&mut self, additional: usize) {
let (_, &mut len, cap) = self.triple_mut();
if cap - len < additional {
let new_cap = len
.checked_add(additional)
.and_then(usize::checked_next_power_of_two)
.unwrap_or(usize::max_value());
self.grow(new_cap);
}
}
pub fn reserve_exact(&mut self, additional: usize) {
let (_, &mut len, cap) = self.triple_mut();
if cap - len < additional {
match len.checked_add(additional) {
Some(cap) => self.grow(cap),
None => panic!("reserve_exact overflow"),
}
}
}
pub fn shrink_to_fit(&mut self) {
if !self.spilled() {
return;
}
let len = self.len();
if self.inline_size() >= len {
unsafe {
let (ptr, len) = self.data.heap();
self.data = SmallVecData::from_inline(MaybeUninit::uninit());
ptr::copy_nonoverlapping(ptr, self.data.inline_mut(), len);
deallocate(ptr, self.capacity);
self.capacity = len;
}
} else if self.capacity() > len {
self.grow(len);
}
}
pub fn truncate(&mut self, len: usize) {
unsafe {
let (ptr, len_ptr, _) = self.triple_mut();
while len < *len_ptr {
let last_index = *len_ptr - 1;
*len_ptr = last_index;
ptr::drop_in_place(ptr.add(last_index));
}
}
}
pub fn as_slice(&self) -> &[A::Item] {
self
}
pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
self
}
#[inline]
pub fn swap_remove(&mut self, index: usize) -> A::Item {
let len = self.len();
self.swap(len - 1, index);
self.pop()
.unwrap_or_else(|| unsafe { unreachable_unchecked() })
}
#[inline]
pub fn clear(&mut self) {
self.truncate(0);
}
pub fn remove(&mut self, index: usize) -> A::Item {
unsafe {
let (mut ptr, len_ptr, _) = self.triple_mut();
let len = *len_ptr;
assert!(index < len);
*len_ptr = len - 1;
ptr = ptr.add(index);
let item = ptr::read(ptr);
ptr::copy(ptr.add(1), ptr, len - index - 1);
item
}
}
pub fn insert(&mut self, index: usize, element: A::Item) {
self.reserve(1);
unsafe {
let (mut ptr, len_ptr, _) = self.triple_mut();
let len = *len_ptr;
assert!(index <= len);
*len_ptr = len + 1;
ptr = ptr.add(index);
ptr::copy(ptr, ptr.add(1), len - index);
ptr::write(ptr, element);
}
}
pub fn insert_many<I: IntoIterator<Item = A::Item>>(&mut self, index: usize, iterable: I) {
let iter = iterable.into_iter();
if index == self.len() {
return self.extend(iter);
}
let (lower_size_bound, _) = iter.size_hint();
assert!(lower_size_bound <= core::isize::MAX as usize);
assert!(index + lower_size_bound >= index);
self.reserve(lower_size_bound);
unsafe {
let old_len = self.len();
assert!(index <= old_len);
let mut ptr = self.as_mut_ptr().add(index);
ptr::copy(ptr, ptr.add(lower_size_bound), old_len - index);
self.set_len(index);
let mut num_added = 0;
for element in iter {
let mut cur = ptr.add(num_added);
if num_added >= lower_size_bound {
self.reserve(1);
ptr = self.as_mut_ptr().add(index);
cur = ptr.add(num_added);
ptr::copy(cur, cur.add(1), old_len - index);
}
ptr::write(cur, element);
num_added += 1;
}
if num_added < lower_size_bound {
ptr::copy(
ptr.add(lower_size_bound),
ptr.add(num_added),
old_len - index,
);
}
self.set_len(old_len + num_added);
}
}
pub fn into_vec(self) -> Vec<A::Item> {
if self.spilled() {
unsafe {
let (ptr, len) = self.data.heap();
let v = Vec::from_raw_parts(ptr, len, self.capacity);
mem::forget(self);
v
}
} else {
self.into_iter().collect()
}
}
pub fn into_boxed_slice(self) -> Box<[A::Item]> {
self.into_vec().into_boxed_slice()
}
pub fn into_inner(self) -> Result<A, Self> {
if self.spilled() || self.len() != A::size() {
Err(self)
} else {
unsafe {
let data = ptr::read(&self.data);
mem::forget(self);
Ok(data.into_inline().assume_init())
}
}
}
pub fn retain<F: FnMut(&mut A::Item) -> bool>(&mut self, mut f: F) {
let mut del = 0;
let len = self.len();
for i in 0..len {
if !f(&mut self[i]) {
del += 1;
} else if del > 0 {
self.swap(i - del, i);
}
}
self.truncate(len - del);
}
pub fn dedup(&mut self)
where
A::Item: PartialEq<A::Item>,
{
self.dedup_by(|a, b| a == b);
}
pub fn dedup_by<F>(&mut self, mut same_bucket: F)
where
F: FnMut(&mut A::Item, &mut A::Item) -> bool,
{
let len = self.len();
if len <= 1 {
return;
}
let ptr = self.as_mut_ptr();
let mut w: usize = 1;
unsafe {
for r in 1..len {
let p_r = ptr.add(r);
let p_wm1 = ptr.add(w - 1);
if !same_bucket(&mut *p_r, &mut *p_wm1) {
if r != w {
let p_w = p_wm1.add(1);
mem::swap(&mut *p_r, &mut *p_w);
}
w += 1;
}
}
}
self.truncate(w);
}
pub fn dedup_by_key<F, K>(&mut self, mut key: F)
where
F: FnMut(&mut A::Item) -> K,
K: PartialEq<K>,
{
self.dedup_by(|a, b| key(a) == key(b));
}
pub unsafe fn from_raw_parts(ptr: *mut A::Item, length: usize, capacity: usize) -> SmallVec<A> {
assert!(capacity > A::size());
SmallVec {
capacity,
data: SmallVecData::from_heap(ptr, length),
}
}
}
impl<A: Array> SmallVec<A>
where
A::Item: Copy,
{
pub fn from_slice(slice: &[A::Item]) -> Self {
let len = slice.len();
if len <= A::size() {
SmallVec {
capacity: len,
data: SmallVecData::from_inline(unsafe {
let mut data: MaybeUninit<A> = MaybeUninit::uninit();
ptr::copy_nonoverlapping(
slice.as_ptr(),
data.as_mut_ptr() as *mut A::Item,
len,
);
data
}),
}
} else {
let mut b = slice.to_vec();
let (ptr, cap) = (b.as_mut_ptr(), b.capacity());
mem::forget(b);
SmallVec {
capacity: cap,
data: SmallVecData::from_heap(ptr, len),
}
}
}
pub fn insert_from_slice(&mut self, index: usize, slice: &[A::Item]) {
self.reserve(slice.len());
let len = self.len();
assert!(index <= len);
unsafe {
let slice_ptr = slice.as_ptr();
let ptr = self.as_mut_ptr().add(index);
ptr::copy(ptr, ptr.add(slice.len()), len - index);
ptr::copy_nonoverlapping(slice_ptr, ptr, slice.len());
self.set_len(len + slice.len());
}
}
#[inline]
pub fn extend_from_slice(&mut self, slice: &[A::Item]) {
let len = self.len();
self.insert_from_slice(len, slice);
}
}
impl<A: Array> SmallVec<A>
where
A::Item: Clone,
{
pub fn resize(&mut self, len: usize, value: A::Item) {
let old_len = self.len();
if len > old_len {
self.extend(repeat(value).take(len - old_len));
} else {
self.truncate(len);
}
}
pub fn from_elem(elem: A::Item, n: usize) -> Self {
if n > A::size() {
vec![elem; n].into()
} else {
let mut v = SmallVec::<A>::new();
unsafe {
let (ptr, len_ptr, _) = v.triple_mut();
let mut local_len = SetLenOnDrop::new(len_ptr);
for i in 0..n {
::core::ptr::write(ptr.add(i), elem.clone());
local_len.increment_len(1);
}
}
v
}
}
}
impl<A: Array> ops::Deref for SmallVec<A> {
type Target = [A::Item];
#[inline]
fn deref(&self) -> &[A::Item] {
unsafe {
let (ptr, len, _) = self.triple();
slice::from_raw_parts(ptr, len)
}
}
}
impl<A: Array> ops::DerefMut for SmallVec<A> {
#[inline]
fn deref_mut(&mut self) -> &mut [A::Item] {
unsafe {
let (ptr, &mut len, _) = self.triple_mut();
slice::from_raw_parts_mut(ptr, len)
}
}
}
impl<A: Array> AsRef<[A::Item]> for SmallVec<A> {
#[inline]
fn as_ref(&self) -> &[A::Item] {
self
}
}
impl<A: Array> AsMut<[A::Item]> for SmallVec<A> {
#[inline]
fn as_mut(&mut self) -> &mut [A::Item] {
self
}
}
impl<A: Array> Borrow<[A::Item]> for SmallVec<A> {
#[inline]
fn borrow(&self) -> &[A::Item] {
self
}
}
impl<A: Array> BorrowMut<[A::Item]> for SmallVec<A> {
#[inline]
fn borrow_mut(&mut self) -> &mut [A::Item] {
self
}
}
#[cfg(feature = "write")]
impl<A: Array<Item = u8>> io::Write for SmallVec<A> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(feature = "serde")]
impl<A: Array> Serialize for SmallVec<A>
where
A::Item: Serialize,
{
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
let mut state = serializer.serialize_seq(Some(self.len()))?;
for item in self {
state.serialize_element(&item)?;
}
state.end()
}
}
#[cfg(feature = "serde")]
impl<'de, A: Array> Deserialize<'de> for SmallVec<A>
where
A::Item: Deserialize<'de>,
{
fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
deserializer.deserialize_seq(SmallVecVisitor {
phantom: PhantomData,
})
}
}
#[cfg(feature = "serde")]
struct SmallVecVisitor<A> {
phantom: PhantomData<A>,
}
#[cfg(feature = "serde")]
impl<'de, A: Array> Visitor<'de> for SmallVecVisitor<A>
where
A::Item: Deserialize<'de>,
{
type Value = SmallVec<A>;
fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
formatter.write_str("a sequence")
}
fn visit_seq<B>(self, mut seq: B) -> Result<Self::Value, B::Error>
where
B: SeqAccess<'de>,
{
let len = seq.size_hint().unwrap_or(0);
let mut values = SmallVec::with_capacity(len);
while let Some(value) = seq.next_element()? {
values.push(value);
}
Ok(values)
}
}
#[cfg(feature = "specialization")]
trait SpecFrom<A: Array, S> {
fn spec_from(slice: S) -> SmallVec<A>;
}
#[cfg(feature = "specialization")]
mod specialization;
#[cfg(feature = "specialization")]
impl<'a, A: Array> SpecFrom<A, &'a [A::Item]> for SmallVec<A>
where
A::Item: Copy,
{
#[inline]
fn spec_from(slice: &'a [A::Item]) -> SmallVec<A> {
SmallVec::from_slice(slice)
}
}
impl<'a, A: Array> From<&'a [A::Item]> for SmallVec<A>
where
A::Item: Clone,
{
#[cfg(not(feature = "specialization"))]
#[inline]
fn from(slice: &'a [A::Item]) -> SmallVec<A> {
slice.iter().cloned().collect()
}
#[cfg(feature = "specialization")]
#[inline]
fn from(slice: &'a [A::Item]) -> SmallVec<A> {
SmallVec::spec_from(slice)
}
}
impl<A: Array> From<Vec<A::Item>> for SmallVec<A> {
#[inline]
fn from(vec: Vec<A::Item>) -> SmallVec<A> {
SmallVec::from_vec(vec)
}
}
impl<A: Array> From<A> for SmallVec<A> {
#[inline]
fn from(array: A) -> SmallVec<A> {
SmallVec::from_buf(array)
}
}
impl<A: Array, I: SliceIndex<[A::Item]>> ops::Index<I> for SmallVec<A> {
type Output = I::Output;
fn index(&self, index: I) -> &I::Output {
&(**self)[index]
}
}
impl<A: Array, I: SliceIndex<[A::Item]>> ops::IndexMut<I> for SmallVec<A> {
fn index_mut(&mut self, index: I) -> &mut I::Output {
&mut (&mut **self)[index]
}
}
impl<A: Array> ExtendFromSlice<A::Item> for SmallVec<A>
where
A::Item: Copy,
{
fn extend_from_slice(&mut self, other: &[A::Item]) {
SmallVec::extend_from_slice(self, other)
}
}
impl<A: Array> FromIterator<A::Item> for SmallVec<A> {
fn from_iter<I: IntoIterator<Item = A::Item>>(iterable: I) -> SmallVec<A> {
let mut v = SmallVec::new();
v.extend(iterable);
v
}
}
impl<A: Array> Extend<A::Item> for SmallVec<A> {
fn extend<I: IntoIterator<Item = A::Item>>(&mut self, iterable: I) {
let mut iter = iterable.into_iter();
let (lower_size_bound, _) = iter.size_hint();
self.reserve(lower_size_bound);
unsafe {
let (ptr, len_ptr, cap) = self.triple_mut();
let mut len = SetLenOnDrop::new(len_ptr);
while len.get() < cap {
if let Some(out) = iter.next() {
ptr::write(ptr.add(len.get()), out);
len.increment_len(1);
} else {
return;
}
}
}
for elem in iter {
self.push(elem);
}
}
}
impl<A: Array> fmt::Debug for SmallVec<A>
where
A::Item: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
impl<A: Array> Default for SmallVec<A> {
#[inline]
fn default() -> SmallVec<A> {
SmallVec::new()
}
}
#[cfg(feature = "may_dangle")]
unsafe impl<#[may_dangle] A: Array> Drop for SmallVec<A> {
fn drop(&mut self) {
unsafe {
if self.spilled() {
let (ptr, len) = self.data.heap();
Vec::from_raw_parts(ptr, len, self.capacity);
} else {
ptr::drop_in_place(&mut self[..]);
}
}
}
}
#[cfg(not(feature = "may_dangle"))]
impl<A: Array> Drop for SmallVec<A> {
fn drop(&mut self) {
unsafe {
if self.spilled() {
let (ptr, len) = self.data.heap();
Vec::from_raw_parts(ptr, len, self.capacity);
} else {
ptr::drop_in_place(&mut self[..]);
}
}
}
}
impl<A: Array> Clone for SmallVec<A>
where
A::Item: Clone,
{
fn clone(&self) -> SmallVec<A> {
let mut new_vector = SmallVec::with_capacity(self.len());
for element in self.iter() {
new_vector.push((*element).clone())
}
new_vector
}
}
impl<A: Array, B: Array> PartialEq<SmallVec<B>> for SmallVec<A>
where
A::Item: PartialEq<B::Item>,
{
#[inline]
fn eq(&self, other: &SmallVec<B>) -> bool {
self[..] == other[..]
}
}
impl<A: Array> Eq for SmallVec<A> where A::Item: Eq {}
impl<A: Array> PartialOrd for SmallVec<A>
where
A::Item: PartialOrd,
{
#[inline]
fn partial_cmp(&self, other: &SmallVec<A>) -> Option<cmp::Ordering> {
PartialOrd::partial_cmp(&**self, &**other)
}
}
impl<A: Array> Ord for SmallVec<A>
where
A::Item: Ord,
{
#[inline]
fn cmp(&self, other: &SmallVec<A>) -> cmp::Ordering {
Ord::cmp(&**self, &**other)
}
}
impl<A: Array> Hash for SmallVec<A>
where
A::Item: Hash,
{
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state)
}
}
unsafe impl<A: Array> Send for SmallVec<A> where A::Item: Send {}
pub struct IntoIter<A: Array> {
data: SmallVec<A>,
current: usize,
end: usize,
}
impl<A: Array> fmt::Debug for IntoIter<A>
where
A::Item: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
}
}
impl<A: Array + Clone> Clone for IntoIter<A>
where
A::Item: Clone,
{
fn clone(&self) -> IntoIter<A> {
SmallVec::from(self.as_slice()).into_iter()
}
}
impl<A: Array> Drop for IntoIter<A> {
fn drop(&mut self) {
for _ in self {}
}
}
impl<A: Array> Iterator for IntoIter<A> {
type Item = A::Item;
#[inline]
fn next(&mut self) -> Option<A::Item> {
if self.current == self.end {
None
} else {
unsafe {
let current = self.current;
self.current += 1;
Some(ptr::read(self.data.as_ptr().add(current)))
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let size = self.end - self.current;
(size, Some(size))
}
}
impl<A: Array> DoubleEndedIterator for IntoIter<A> {
#[inline]
fn next_back(&mut self) -> Option<A::Item> {
if self.current == self.end {
None
} else {
unsafe {
self.end -= 1;
Some(ptr::read(self.data.as_ptr().add(self.end)))
}
}
}
}
impl<A: Array> ExactSizeIterator for IntoIter<A> {}
impl<A: Array> FusedIterator for IntoIter<A> {}
impl<A: Array> IntoIter<A> {
pub fn as_slice(&self) -> &[A::Item] {
let len = self.end - self.current;
unsafe { core::slice::from_raw_parts(self.data.as_ptr().add(self.current), len) }
}
pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
let len = self.end - self.current;
unsafe { core::slice::from_raw_parts_mut(self.data.as_mut_ptr().add(self.current), len) }
}
}
impl<A: Array> IntoIterator for SmallVec<A> {
type IntoIter = IntoIter<A>;
type Item = A::Item;
fn into_iter(mut self) -> Self::IntoIter {
unsafe {
let len = self.len();
self.set_len(0);
IntoIter {
data: self,
current: 0,
end: len,
}
}
}
}
impl<'a, A: Array> IntoIterator for &'a SmallVec<A> {
type IntoIter = slice::Iter<'a, A::Item>;
type Item = &'a A::Item;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, A: Array> IntoIterator for &'a mut SmallVec<A> {
type IntoIter = slice::IterMut<'a, A::Item>;
type Item = &'a mut A::Item;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
pub unsafe trait Array {
type Item;
fn size() -> usize;
}
struct SetLenOnDrop<'a> {
len: &'a mut usize,
local_len: usize,
}
impl<'a> SetLenOnDrop<'a> {
#[inline]
fn new(len: &'a mut usize) -> Self {
SetLenOnDrop {
local_len: *len,
len,
}
}
#[inline]
fn get(&self) -> usize {
self.local_len
}
#[inline]
fn increment_len(&mut self, increment: usize) {
self.local_len += increment;
}
}
impl<'a> Drop for SetLenOnDrop<'a> {
#[inline]
fn drop(&mut self) {
*self.len = self.local_len;
}
}
macro_rules! impl_array(
($($size:expr),+) => {
$(
unsafe impl<T> Array for [T; $size] {
type Item = T;
fn size() -> usize { $size }
}
)+
}
);
impl_array!(
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 32, 36, 0x40, 0x60, 0x80,
0x100, 0x200, 0x400, 0x600, 0x800, 0x1000, 0x2000, 0x4000, 0x6000, 0x8000, 0x10000, 0x20000,
0x40000, 0x60000, 0x80000, 0x10_0000
);
#[cfg(test)]
mod tests {
use crate::SmallVec;
use std::iter::FromIterator;
use alloc::borrow::ToOwned;
use alloc::boxed::Box;
use alloc::rc::Rc;
use alloc::{vec, vec::Vec};
#[test]
pub fn test_zero() {
let mut v = SmallVec::<[_; 0]>::new();
assert!(!v.spilled());
v.push(0usize);
assert!(v.spilled());
assert_eq!(&*v, &[0]);
}
#[test]
pub fn test_inline() {
let mut v = SmallVec::<[_; 16]>::new();
v.push("hello".to_owned());
v.push("there".to_owned());
assert_eq!(&*v, &["hello".to_owned(), "there".to_owned(),][..]);
}
#[test]
pub fn test_spill() {
let mut v = SmallVec::<[_; 2]>::new();
v.push("hello".to_owned());
assert_eq!(v[0], "hello");
v.push("there".to_owned());
v.push("burma".to_owned());
assert_eq!(v[0], "hello");
v.push("shave".to_owned());
assert_eq!(
&*v,
&[
"hello".to_owned(),
"there".to_owned(),
"burma".to_owned(),
"shave".to_owned(),
][..]
);
}
#[test]
pub fn test_double_spill() {
let mut v = SmallVec::<[_; 2]>::new();
v.push("hello".to_owned());
v.push("there".to_owned());
v.push("burma".to_owned());
v.push("shave".to_owned());
v.push("hello".to_owned());
v.push("there".to_owned());
v.push("burma".to_owned());
v.push("shave".to_owned());
assert_eq!(
&*v,
&[
"hello".to_owned(),
"there".to_owned(),
"burma".to_owned(),
"shave".to_owned(),
"hello".to_owned(),
"there".to_owned(),
"burma".to_owned(),
"shave".to_owned(),
][..]
);
}
#[test]
fn issue_4() {
SmallVec::<[Box<u32>; 2]>::new();
}
#[test]
fn issue_5() {
assert!(Some(SmallVec::<[&u32; 2]>::new()).is_some());
}
#[test]
fn test_with_capacity() {
let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(1);
assert!(v.is_empty());
assert!(!v.spilled());
assert_eq!(v.capacity(), 3);
let v: SmallVec<[u8; 3]> = SmallVec::with_capacity(10);
assert!(v.is_empty());
assert!(v.spilled());
assert_eq!(v.capacity(), 10);
}
#[test]
fn drain() {
let mut v: SmallVec<[u8; 2]> = SmallVec::new();
v.push(3);
assert_eq!(v.drain(..).collect::<Vec<_>>(), &[3]);
v.push(3);
v.push(4);
v.push(5);
let old_capacity = v.capacity();
assert_eq!(v.drain(1..).collect::<Vec<_>>(), &[4, 5]);
assert_eq!(v.capacity(), old_capacity);
}
#[test]
fn drain_rev() {
let mut v: SmallVec<[u8; 2]> = SmallVec::new();
v.push(3);
assert_eq!(v.drain(..).rev().collect::<Vec<_>>(), &[3]);
v.push(3);
v.push(4);
v.push(5);
assert_eq!(v.drain(..).rev().collect::<Vec<_>>(), &[5, 4, 3]);
}
#[test]
fn drain_forget() {
let mut v: SmallVec<[u8; 1]> = smallvec![0, 1, 2, 3, 4, 5, 6, 7];
std::mem::forget(v.drain(2..5));
assert_eq!(v.len(), 2);
}
#[test]
fn into_iter() {
let mut v: SmallVec<[u8; 2]> = SmallVec::new();
v.push(3);
assert_eq!(v.into_iter().collect::<Vec<_>>(), &[3]);
let mut v: SmallVec<[u8; 2]> = SmallVec::new();
v.push(3);
v.push(4);
v.push(5);
assert_eq!(v.into_iter().collect::<Vec<_>>(), &[3, 4, 5]);
}
#[test]
fn into_iter_rev() {
let mut v: SmallVec<[u8; 2]> = SmallVec::new();
v.push(3);
assert_eq!(v.into_iter().rev().collect::<Vec<_>>(), &[3]);
let mut v: SmallVec<[u8; 2]> = SmallVec::new();
v.push(3);
v.push(4);
v.push(5);
assert_eq!(v.into_iter().rev().collect::<Vec<_>>(), &[5, 4, 3]);
}
#[test]
fn into_iter_drop() {
use std::cell::Cell;
struct DropCounter<'a>(&'a Cell<i32>);
impl<'a> Drop for DropCounter<'a> {
fn drop(&mut self) {
self.0.set(self.0.get() + 1);
}
}
{
let cell = Cell::new(0);
let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new();
v.push(DropCounter(&cell));
v.into_iter();
assert_eq!(cell.get(), 1);
}
{
let cell = Cell::new(0);
let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new();
v.push(DropCounter(&cell));
v.push(DropCounter(&cell));
assert!(v.into_iter().next().is_some());
assert_eq!(cell.get(), 2);
}
{
let cell = Cell::new(0);
let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new();
v.push(DropCounter(&cell));
v.push(DropCounter(&cell));
v.push(DropCounter(&cell));
assert!(v.into_iter().next().is_some());
assert_eq!(cell.get(), 3);
}
{
let cell = Cell::new(0);
let mut v: SmallVec<[DropCounter<'_>; 2]> = SmallVec::new();
v.push(DropCounter(&cell));
v.push(DropCounter(&cell));
v.push(DropCounter(&cell));
{
let mut it = v.into_iter();
assert!(it.next().is_some());
assert!(it.next_back().is_some());
}
assert_eq!(cell.get(), 3);
}
}
#[test]
fn test_capacity() {
let mut v: SmallVec<[u8; 2]> = SmallVec::new();
v.reserve(1);
assert_eq!(v.capacity(), 2);
assert!(!v.spilled());
v.reserve_exact(0x100);
assert!(v.capacity() >= 0x100);
v.push(0);
v.push(1);
v.push(2);
v.push(3);
v.shrink_to_fit();
assert!(v.capacity() < 0x100);
}
#[test]
fn test_truncate() {
let mut v: SmallVec<[Box<u8>; 8]> = SmallVec::new();
for x in 0..8 {
v.push(Box::new(x));
}
v.truncate(4);
assert_eq!(v.len(), 4);
assert!(!v.spilled());
assert_eq!(*v.swap_remove(1), 1);
assert_eq!(*v.remove(1), 3);
v.insert(1, Box::new(3));
assert_eq!(&v.iter().map(|v| **v).collect::<Vec<_>>(), &[0, 3, 2]);
}
#[test]
fn test_insert_many() {
let mut v: SmallVec<[u8; 8]> = SmallVec::new();
for x in 0..4 {
v.push(x);
}
assert_eq!(v.len(), 4);
v.insert_many(1, [5, 6].iter().cloned());
assert_eq!(
&v.iter().map(|v| *v).collect::<Vec<_>>(),
&[0, 5, 6, 1, 2, 3]
);
}
struct MockHintIter<T: Iterator> {
x: T,
hint: usize,
}
impl<T: Iterator> Iterator for MockHintIter<T> {
type Item = T::Item;
fn next(&mut self) -> Option<Self::Item> {
self.x.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.hint, None)
}
}
#[test]
fn test_insert_many_short_hint() {
let mut v: SmallVec<[u8; 8]> = SmallVec::new();
for x in 0..4 {
v.push(x);
}
assert_eq!(v.len(), 4);
v.insert_many(
1,
MockHintIter {
x: [5, 6].iter().cloned(),
hint: 5,
},
);
assert_eq!(
&v.iter().map(|v| *v).collect::<Vec<_>>(),
&[0, 5, 6, 1, 2, 3]
);
}
#[test]
fn test_insert_many_long_hint() {
let mut v: SmallVec<[u8; 8]> = SmallVec::new();
for x in 0..4 {
v.push(x);
}
assert_eq!(v.len(), 4);
v.insert_many(
1,
MockHintIter {
x: [5, 6].iter().cloned(),
hint: 1,
},
);
assert_eq!(
&v.iter().map(|v| *v).collect::<Vec<_>>(),
&[0, 5, 6, 1, 2, 3]
);
}
#[test]
fn test_insert_many_panic() {
struct PanicOnDoubleDrop {
dropped: Box<bool>,
}
impl Drop for PanicOnDoubleDrop {
fn drop(&mut self) {
assert!(!*self.dropped, "already dropped");
*self.dropped = true;
}
}
struct BadIter;
impl Iterator for BadIter {
type Item = PanicOnDoubleDrop;
fn size_hint(&self) -> (usize, Option<usize>) {
(1, None)
}
fn next(&mut self) -> Option<Self::Item> {
panic!()
}
}
let mut vec: SmallVec<[PanicOnDoubleDrop; 0]> = vec![
PanicOnDoubleDrop {
dropped: Box::new(false),
},
PanicOnDoubleDrop {
dropped: Box::new(false),
},
]
.into();
let result = ::std::panic::catch_unwind(move || {
vec.insert_many(0, BadIter);
});
assert!(result.is_err());
}
#[test]
#[should_panic]
fn test_invalid_grow() {
let mut v: SmallVec<[u8; 8]> = SmallVec::new();
v.extend(0..8);
v.grow(5);
}
#[test]
fn test_insert_from_slice() {
let mut v: SmallVec<[u8; 8]> = SmallVec::new();
for x in 0..4 {
v.push(x);
}
assert_eq!(v.len(), 4);
v.insert_from_slice(1, &[5, 6]);
assert_eq!(
&v.iter().map(|v| *v).collect::<Vec<_>>(),
&[0, 5, 6, 1, 2, 3]
);
}
#[test]
fn test_extend_from_slice() {
let mut v: SmallVec<[u8; 8]> = SmallVec::new();
for x in 0..4 {
v.push(x);
}
assert_eq!(v.len(), 4);
v.extend_from_slice(&[5, 6]);
assert_eq!(
&v.iter().map(|v| *v).collect::<Vec<_>>(),
&[0, 1, 2, 3, 5, 6]
);
}
#[test]
#[should_panic]
fn test_drop_panic_smallvec() {
struct DropPanic;
impl Drop for DropPanic {
fn drop(&mut self) {
panic!("drop");
}
}
let mut v = SmallVec::<[_; 1]>::new();
v.push(DropPanic);
}
#[test]
fn test_eq() {
let mut a: SmallVec<[u32; 2]> = SmallVec::new();
let mut b: SmallVec<[u32; 2]> = SmallVec::new();
let mut c: SmallVec<[u32; 2]> = SmallVec::new();
a.push(1);
a.push(2);
b.push(1);
b.push(2);
c.push(3);
c.push(4);
assert!(a == b);
assert!(a != c);
}
#[test]
fn test_ord() {
let mut a: SmallVec<[u32; 2]> = SmallVec::new();
let mut b: SmallVec<[u32; 2]> = SmallVec::new();
let mut c: SmallVec<[u32; 2]> = SmallVec::new();
a.push(1);
b.push(1);
b.push(1);
c.push(1);
c.push(2);
assert!(a < b);
assert!(b > a);
assert!(b < c);
assert!(c > b);
}
#[test]
fn test_hash() {
use std::collections::hash_map::DefaultHasher;
use std::hash::Hash;
{
let mut a: SmallVec<[u32; 2]> = SmallVec::new();
let b = [1, 2];
a.extend(b.iter().cloned());
let mut hasher = DefaultHasher::new();
assert_eq!(a.hash(&mut hasher), b.hash(&mut hasher));
}
{
let mut a: SmallVec<[u32; 2]> = SmallVec::new();
let b = [1, 2, 11, 12];
a.extend(b.iter().cloned());
let mut hasher = DefaultHasher::new();
assert_eq!(a.hash(&mut hasher), b.hash(&mut hasher));
}
}
#[test]
fn test_as_ref() {
let mut a: SmallVec<[u32; 2]> = SmallVec::new();
a.push(1);
assert_eq!(a.as_ref(), [1]);
a.push(2);
assert_eq!(a.as_ref(), [1, 2]);
a.push(3);
assert_eq!(a.as_ref(), [1, 2, 3]);
}
#[test]
fn test_as_mut() {
let mut a: SmallVec<[u32; 2]> = SmallVec::new();
a.push(1);
assert_eq!(a.as_mut(), [1]);
a.push(2);
assert_eq!(a.as_mut(), [1, 2]);
a.push(3);
assert_eq!(a.as_mut(), [1, 2, 3]);
a.as_mut()[1] = 4;
assert_eq!(a.as_mut(), [1, 4, 3]);
}
#[test]
fn test_borrow() {
use std::borrow::Borrow;
let mut a: SmallVec<[u32; 2]> = SmallVec::new();
a.push(1);
assert_eq!(a.borrow(), [1]);
a.push(2);
assert_eq!(a.borrow(), [1, 2]);
a.push(3);
assert_eq!(a.borrow(), [1, 2, 3]);
}
#[test]
fn test_borrow_mut() {
use std::borrow::BorrowMut;
let mut a: SmallVec<[u32; 2]> = SmallVec::new();
a.push(1);
assert_eq!(a.borrow_mut(), [1]);
a.push(2);
assert_eq!(a.borrow_mut(), [1, 2]);
a.push(3);
assert_eq!(a.borrow_mut(), [1, 2, 3]);
BorrowMut::<[u32]>::borrow_mut(&mut a)[1] = 4;
assert_eq!(a.borrow_mut(), [1, 4, 3]);
}
#[test]
fn test_from() {
assert_eq!(&SmallVec::<[u32; 2]>::from(&[1][..])[..], [1]);
assert_eq!(&SmallVec::<[u32; 2]>::from(&[1, 2, 3][..])[..], [1, 2, 3]);
let vec = vec![];
let small_vec: SmallVec<[u8; 3]> = SmallVec::from(vec);
assert_eq!(&*small_vec, &[]);
drop(small_vec);
let vec = vec![1, 2, 3, 4, 5];
let small_vec: SmallVec<[u8; 3]> = SmallVec::from(vec);
assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
drop(small_vec);
let vec = vec![1, 2, 3, 4, 5];
let small_vec: SmallVec<[u8; 1]> = SmallVec::from(vec);
assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
drop(small_vec);
let array = [1];
let small_vec: SmallVec<[u8; 1]> = SmallVec::from(array);
assert_eq!(&*small_vec, &[1]);
drop(small_vec);
let array = [99; 128];
let small_vec: SmallVec<[u8; 128]> = SmallVec::from(array);
assert_eq!(&*small_vec, vec![99u8; 128].as_slice());
drop(small_vec);
}
#[test]
fn test_from_slice() {
assert_eq!(&SmallVec::<[u32; 2]>::from_slice(&[1][..])[..], [1]);
assert_eq!(
&SmallVec::<[u32; 2]>::from_slice(&[1, 2, 3][..])[..],
[1, 2, 3]
);
}
#[test]
fn test_exact_size_iterator() {
let mut vec = SmallVec::<[u32; 2]>::from(&[1, 2, 3][..]);
assert_eq!(vec.clone().into_iter().len(), 3);
assert_eq!(vec.drain(..2).len(), 2);
assert_eq!(vec.into_iter().len(), 1);
}
#[test]
fn test_into_iter_as_slice() {
let vec = SmallVec::<[u32; 2]>::from(&[1, 2, 3][..]);
let mut iter = vec.clone().into_iter();
assert_eq!(iter.as_slice(), &[1, 2, 3]);
assert_eq!(iter.as_mut_slice(), &[1, 2, 3]);
iter.next();
assert_eq!(iter.as_slice(), &[2, 3]);
assert_eq!(iter.as_mut_slice(), &[2, 3]);
iter.next_back();
assert_eq!(iter.as_slice(), &[2]);
assert_eq!(iter.as_mut_slice(), &[2]);
}
#[test]
fn test_into_iter_clone() {
let mut iter = SmallVec::<[u8; 2]>::from_iter(0..3).into_iter();
let mut clone_iter = iter.clone();
while let Some(x) = iter.next() {
assert_eq!(x, clone_iter.next().unwrap());
}
assert_eq!(clone_iter.next(), None);
}
#[test]
fn test_into_iter_clone_partially_consumed_iterator() {
let mut iter = SmallVec::<[u8; 2]>::from_iter(0..3).into_iter().skip(1);
let mut clone_iter = iter.clone();
while let Some(x) = iter.next() {
assert_eq!(x, clone_iter.next().unwrap());
}
assert_eq!(clone_iter.next(), None);
}
#[test]
fn test_into_iter_clone_empty_smallvec() {
let mut iter = SmallVec::<[u8; 2]>::new().into_iter();
let mut clone_iter = iter.clone();
assert_eq!(iter.next(), None);
assert_eq!(clone_iter.next(), None);
}
#[test]
fn shrink_to_fit_unspill() {
let mut vec = SmallVec::<[u8; 2]>::from_iter(0..3);
vec.pop();
assert!(vec.spilled());
vec.shrink_to_fit();
assert!(!vec.spilled(), "shrink_to_fit will un-spill if possible");
}
#[test]
fn test_into_vec() {
let vec = SmallVec::<[u8; 2]>::from_iter(0..2);
assert_eq!(vec.into_vec(), vec![0, 1]);
let vec = SmallVec::<[u8; 2]>::from_iter(0..3);
assert_eq!(vec.into_vec(), vec![0, 1, 2]);
}
#[test]
fn test_into_inner() {
let vec = SmallVec::<[u8; 2]>::from_iter(0..2);
assert_eq!(vec.into_inner(), Ok([0, 1]));
let vec = SmallVec::<[u8; 2]>::from_iter(0..1);
assert_eq!(vec.clone().into_inner(), Err(vec));
let vec = SmallVec::<[u8; 2]>::from_iter(0..3);
assert_eq!(vec.clone().into_inner(), Err(vec));
}
#[test]
fn test_from_vec() {
let vec = vec![];
let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec);
assert_eq!(&*small_vec, &[]);
drop(small_vec);
let vec = vec![];
let small_vec: SmallVec<[u8; 1]> = SmallVec::from_vec(vec);
assert_eq!(&*small_vec, &[]);
drop(small_vec);
let vec = vec![1];
let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec);
assert_eq!(&*small_vec, &[1]);
drop(small_vec);
let vec = vec![1, 2, 3];
let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec);
assert_eq!(&*small_vec, &[1, 2, 3]);
drop(small_vec);
let vec = vec![1, 2, 3, 4, 5];
let small_vec: SmallVec<[u8; 3]> = SmallVec::from_vec(vec);
assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
drop(small_vec);
let vec = vec![1, 2, 3, 4, 5];
let small_vec: SmallVec<[u8; 1]> = SmallVec::from_vec(vec);
assert_eq!(&*small_vec, &[1, 2, 3, 4, 5]);
drop(small_vec);
}
#[test]
fn test_retain() {
let mut sv: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 2, 3, 3, 4]);
sv.retain(|&mut i| i != 3);
assert_eq!(sv.pop(), Some(4));
assert_eq!(sv.pop(), Some(2));
assert_eq!(sv.pop(), Some(1));
assert_eq!(sv.pop(), None);
let mut sv: SmallVec<[i32; 3]> = SmallVec::from_slice(&[1, 2, 3, 3, 4]);
sv.retain(|&mut i| i != 3);
assert_eq!(sv.pop(), Some(4));
assert_eq!(sv.pop(), Some(2));
assert_eq!(sv.pop(), Some(1));
assert_eq!(sv.pop(), None);
let one = Rc::new(1);
let mut sv: SmallVec<[Rc<i32>; 3]> = SmallVec::new();
sv.push(Rc::clone(&one));
assert_eq!(Rc::strong_count(&one), 2);
sv.retain(|_| false);
assert_eq!(Rc::strong_count(&one), 1);
let mut sv: SmallVec<[Rc<i32>; 1]> = SmallVec::new();
sv.push(Rc::clone(&one));
sv.push(Rc::new(2));
assert_eq!(Rc::strong_count(&one), 2);
sv.retain(|_| false);
assert_eq!(Rc::strong_count(&one), 1);
}
#[test]
fn test_dedup() {
let mut dupes: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 1, 2, 3, 3]);
dupes.dedup();
assert_eq!(&*dupes, &[1, 2, 3]);
let mut empty: SmallVec<[i32; 5]> = SmallVec::new();
empty.dedup();
assert!(empty.is_empty());
let mut all_ones: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 1, 1, 1, 1]);
all_ones.dedup();
assert_eq!(all_ones.len(), 1);
let mut no_dupes: SmallVec<[i32; 5]> = SmallVec::from_slice(&[1, 2, 3, 4, 5]);
no_dupes.dedup();
assert_eq!(no_dupes.len(), 5);
}
#[test]
fn test_resize() {
let mut v: SmallVec<[i32; 8]> = SmallVec::new();
v.push(1);
v.resize(5, 0);
assert_eq!(v[..], [1, 0, 0, 0, 0][..]);
v.resize(2, -1);
assert_eq!(v[..], [1, 0][..]);
}
#[cfg(feature = "write")]
#[test]
fn test_write() {
use std::io::Write;
let data = [1, 2, 3, 4, 5];
let mut small_vec: SmallVec<[u8; 2]> = SmallVec::new();
let len = small_vec.write(&data[..]).unwrap();
assert_eq!(len, 5);
assert_eq!(small_vec.as_ref(), data.as_ref());
let mut small_vec: SmallVec<[u8; 2]> = SmallVec::new();
small_vec.write_all(&data[..]).unwrap();
assert_eq!(small_vec.as_ref(), data.as_ref());
}
#[cfg(feature = "serde")]
extern crate bincode;
#[cfg(feature = "serde")]
#[test]
fn test_serde() {
use self::bincode::{config, deserialize};
let mut small_vec: SmallVec<[i32; 2]> = SmallVec::new();
small_vec.push(1);
let encoded = config().limit(100).serialize(&small_vec).unwrap();
let decoded: SmallVec<[i32; 2]> = deserialize(&encoded).unwrap();
assert_eq!(small_vec, decoded);
small_vec.push(2);
small_vec.push(3);
small_vec.push(4);
let encoded = config().limit(100).serialize(&small_vec).unwrap();
let decoded: SmallVec<[i32; 2]> = deserialize(&encoded).unwrap();
assert_eq!(small_vec, decoded);
}
#[test]
fn grow_to_shrink() {
let mut v: SmallVec<[u8; 2]> = SmallVec::new();
v.push(1);
v.push(2);
v.push(3);
assert!(v.spilled());
v.clear();
v.grow(2);
assert!(!v.spilled());
assert_eq!(v.capacity(), 2);
assert_eq!(v.len(), 0);
v.push(4);
assert_eq!(v[..], [4]);
}
#[test]
fn resumable_extend() {
let s = "a b c";
let it = s
.chars()
.scan(0, |_, ch| if ch.is_whitespace() { None } else { Some(ch) });
let mut v: SmallVec<[char; 4]> = SmallVec::new();
v.extend(it);
assert_eq!(v[..], ['a']);
}
#[test]
fn uninhabited() {
enum Void {}
let _sv = SmallVec::<[Void; 8]>::new();
}
#[test]
fn grow_spilled_same_size() {
let mut v: SmallVec<[u8; 2]> = SmallVec::new();
v.push(0);
v.push(1);
v.push(2);
assert!(v.spilled());
assert_eq!(v.capacity(), 4);
v.grow(4);
assert_eq!(v.capacity(), 4);
assert_eq!(v[..], [0, 1, 2]);
}
}